Submit Manuscript  

Article Details

Optical Properties of Single-Walled Carbon Nanotubes Functionalized with Poly(2,2’-bithiophene-co-pyrene) Copolymer

[ Vol. 19 , Issue. 7 ]


Ion Smaranda, Mihaela Baibarac, Mirela Ilie, Adelina Matea, Ioan Baltog and Serge Lefrant   Pages 652 - 661 ( 10 )


The photoluminescent (PL) properties of composites based on single-walled carbon nanotubes (SWNTs) and poly(2,2´-bithiophene-co-pyrene) (PBTh-Py), prepared by in situ chemical polymerization of the two monomers in the presence of carbon nanotubes, are reported. We demonstrate that the functionalization of SWNTs with PBTh-Py copolymer is revealed through a gradual quenching process of PL with the increase of SWNT content (semiconducting component) in the composite mass. FTIR spectroscopy indicates the existence of several steric hindrance effects that originate in the covalent functionalization of SWNTs with PBTh-Py copolymer. The film deposition of PBTh-Py copolymer and PBTh-Py/SWNTs composite onto rough Au supports induces changes in the FTIR spectrum, which originate in an adsorption mechanism caused by the preferential orientation of molecules on the metallic support. Surface-enhanced Raman scattering (SERS) spectroscopy reveals the side-wall functionalization of SWNTs with PBTh-Py copolymer by changes in the shapes, peak position and relative intensities of different Raman lines.


Carbon nanotubes, functionalization, interface, photoluminescence, vibrational properties.


National Institute of Materials Physics, Lab. of Optical Processes in Nanostructured Materials, P.O. Box: MG-7, R-77125, Bucharest, Romania.

Graphical Abstract:

Read Full-Text article